Kubota Product Identification Number __HOT__
DOWNLOAD ===> https://urlgoal.com/2tqvQp
Toll REFERENCES Aliprantis, A. O., et al. (1999). Cell activation and apoptosis by bacterial lipoproteins throughToll-like receptor-2. Science 285(5428): 736-9. PubMed Citation: 10426996Ambrosi, P., Chahda, J. S., Koslen, H. R., Chiel, H. J. and Mizutani, C. M. (2014). Modeling of the Dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution. PLoS Comput Biol 10: e1003807. PubMed ID: 25165818Anderson, K.V., Jürgens, G. and Nüsslein-Volhard, C. (1985). Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42: 779-789. PubMed Citation: 3931918Armstrong, N. J., et al. (1998). Conserved Spatzle/Toll signaling in dorsoventral patterning ofXenopus embryos. Mech. Dev. 71(1-2): 99-105. PubMed Citation: 9507077Biemar, F., et al. (2006). Comprehensive identification of Drosophila dorsal-ventral patterning genes using a whole-genome tiling array. Proc. Natl. Acad. Sci. 103(34): 12763-8. Medline abstract: 16908844 Boutros, M., Agaisse, H. and Perrimon, N. (2002). Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3: 711-722. 12431377 Bowman, A. B., et al. (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103: 583-594. 11106729 Burns, K., et al. (1998). MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273(20): 12203-9. PubMed Citation: 9575168Byrd, D. T., et al. (2001). UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32: 787-800. 11738026 Carvalho, L., Jacinto, A. and Matova, N. (2014). The Toll/NF-kappaB signaling pathway is required for epidermal wound repair in Drosophila. Proc Natl Acad Sci U S A 111(50):E5373-82. PubMed ID: 25427801Charatsi, I., et al. (2002). Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mech. Dev. 120: 219-226. 12559494 Chaudhary, P. M., et al. (1998). Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91(11): 4020-7. PubMed Citation: 9596645Chen, L. Y., et al. (2006). Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo. Curr. Biol. 16(12): 1183-93. Medline abstract: 16782008 Choe, K. M., Werner, T., Stoven, S., Hultmark, D. and Anderson, K. V. (2002). Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296: 359-362. 11872802 Chow, J. C., et al. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signaltransduction. J. Biol. Chem. 274(16): 10689-10692. PubMed Citation: 10196138 Coll, O., et al. (2010). A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes Dev. 24(2): 129-34. PubMed Citation: 20080951Colonnetta, M. M., Lym, L. R., Wilkins, L., Kappes, G., Castro, E. A., Ryder, P. V., Schedl, P., Lerit, D. A. and Deshpande, G. (2021). Antagonism between germ cell-less and Torso receptor regulates transcriptional quiescence underlying germline/soma distinction. Elife 10. PubMed ID: 33459591Creton, R., Kreiling, J. A. and Jaffe, L. F. (2000). Presence and roles of calcium gradients alongthe dorsal-ventral axis in Drosophila embryos. Dev. Biol. 217: 375-385. PubMed Citation: 10625561 Davidson, C., Tirouvanziam, R., Herzenberg, L. and Lipsick, J. (2004). Functional Evolution of the Vertebrate Myb Gene Family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in Hemocytes. Genetics 169(1): 215-29. 15489525 De Gregorio, E., et al. (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21: 2568-2579. 12032070 Dziarski, R. (2004). Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40: 877-886. 14698226 Edwards, D. N., Towb, P. and Wasserman, S. A. (1997). An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124(19): 3855-3864. PubMed Citation: 9367441El Chamy, L., Leclerc, V., Caldelari, I. and Reichhart, J. M. (2008). Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nat. Immunol. 9: 1165-1170. PubMed Citation: 18724373Eldon, E., et al. (1994). The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120: 885-899. PubMed Citation: 7600965 Engel, E., Viargues, P., Mortier, M., Taillebourg, E., Coute, Y., Thevenon, D. and Fauvarque, M. O. (2014). Identifying USPs regulating immune signals in Drosophila:USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome. Cell Commun Signal 12: 41. PubMed ID: 25027767Ferreira, A. G., Naylor, H., Esteves, S. S., Pais, I. S., Martins, N. E. and Teixeira, L. (2014). The Toll-Dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10: e1004507. PubMed ID: 25473839Galindo, R. L., et al. (1995). Interaction of the pelle kinase with themembrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121: 2209-2218. PubMed Citation: 7635064 Garver, L. S., Wu, J. and Wu, L. P. (2006). The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. 103(3): 660-5. 16407137 Gay, N. J., et al. (1991). A leucine-rich repeat peptide derived from theDrosophila Toll receptor forms extended filaments with abeta-sheet structure. FEBS Lett. 291 (1): 87-91. PubMed Citation: 1657640Germani, F., Hain, D., Sternlicht, D., Moreno, E. and Basler, K. (2018).The Toll pathway inhibits tissue growth and regulates cell fitness in aninfection-dependent manner. Elife 7. PubMed ID: 30451683Ghavi-Helm, Y., Jankowski, A., Meiers, S., Viales, R. R., Korbel, J. O. and Furlong, E. E. M. (2019). Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat Genet 51(8): 1272-1282. PubMed ID: 31308546 Gillespie, S. K. and Wasserman, S. A. (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylatedupon activation of the transmembrane protein Toll. Mol Cell Biol 14: 3559-68. PubMed Citation: 8196601Gonzalez-Crespo, S. and Levine, M. (1994). Related target enhancers for dorsal and NF-kappa B signaling pathways. Science 264: 255-8. PubMed Citation: 8146656Gottar, M., et al. (2006). Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127: 1425-1437. PubMed Citation: 17190605Guida, S., Heguy, A. and Melli, M. (1992). The chicken IL-1 receptor: differential evolution of thecytoplasmic and extracellular domains. Gene 111: 239-43Halfon, M. S., Hashimoto, C. and Keshishian, H. (1995). The Drosophila Toll gene functions zygotically and is necessary for proper motoneuron and muscle development. Dev Biol 169: 151-167Halfon, M. S. and Keshishian, H. (1998). The Toll pathway is required in the epidermis for muscledevelopment in the Drosophila embryo. Dev. Biol. 199(1): 164-174Hashimoto, C., Hudson, K. L. and Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventralembryonic polarity, appears to encode a transmembraneprotein. Cell 52: 269-79 Hashimoto, C., Gerttula, S. and Anderson, K. V. (1991). Plasma membrane localization of the Toll protein in thesyncytial Drosophila embryo: importance oftransmembrane signaling for dorsal-ventral patternformation. Development 111: 1021-8 Heguy, A., et al. (1992). Amino acids conserved in interleukin-1 receptors(IL-1Rs) and the Drosophila Toll protein are essential forIL-1R signal transduction. J Biol Chem 267: 2605-9Horng, T. and Medzhitov, R. (2001). Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl. Acad. Sci. 98: 12654-12658. 11606776 Horng, T., et al. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420: 329-333. 12447442 Hu, S. and Yang, X. (2000). dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275: 30761-30764. 10934188 Hu, X., Yagi, Y., Tanji, T., Zhou, S. and Ip, Y. T. (2004). Multimerization and interaction of Toll and Spatzle in Drosophila. Proc. Natl. Acad. Sci. 101(25): 9369-74. 15197269 Huang, A. M., Rusch, J., and Levine, M. (1997). An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev. 11(15): 1963-1973Huang, H. R., et al. (2010). Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc. Natl. Acad. Sci. 107(18): 8322-7. PubMed Citation: 20404143Hultmark, D. (1994). Macrophage differentiation marker MyD88 is a member of theToll/IL-1 receptor family. Biochem. Biophys. Res. Commun. 199: 144-6Inaki, M., Yoshikawa, S., Thomas, J. B., Aburatani, H. and Nose, A. (2007). Wnt4 is a local repulsive cue that determines synaptic target specificity. Curr. Biol. 17: 1574-1579. PubMed Citation: 17764943Inaki, M., Shinza-Kameda, M., Ismat, A., Frasch, M. and Nose, A. (2010). Drosophila Tey represses transcription of the repulsive cue Toll and generates neuromuscular target specificity. Development 137(13): 2139-46. PubMed Citation: 20504957Ing-Simmons, E., Vaid, R., Bing, X. Y., Levine, M., Mannervik, M. and Vaquerizas, J. M. (2021). Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat Genet 53(4): 487-499. PubMed ID: 33795866Ji, S., Sun, M., Zheng, X., Li, L., Sun, L., Chen, D. and Sun, Q. (2014). Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat Commun 5: 3458. PubMed ID: 24632597Kagan, J. C., et al. (2008). TRAM couples endocytosis